Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 254
Filtrar
1.
Cancers (Basel) ; 16(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38339228

RESUMO

Despite recent advances in cancer therapy, ovarian cancer remains the most lethal gynecological cancer worldwide, making it crucial and of the utmost importance to establish novel therapeutic strategies. Adjuvant radiotherapy has been assessed historically, but its use was limited by intestinal toxicity. We recently established the role of Limosilactobacillus reuteri in releasing IL-22 (LR-IL-22) as an effective radiation mitigator, and we have now assessed its effect in an ovarian cancer mouse model. We hypothesized that an LR-IL-22 gavage would enable intestinal radioprotection by modifying the tumor microenvironment and, subsequently, improving overall survival in female C57BL/6MUC-1 mice with widespread abdominal syngeneic 2F8cis ovarian cancer. Herein, we report that the LR-IL-22 gavage not only improved overall survival in mice when combined with a PD-L1 inhibitor by inducing differential gene expression in irradiated stem cells but also induced PD-L1 protein expression in ovarian cancer cells and mobilized CD8+ T cells in whole abdomen irradiated mice. The addition of LR-IL-22 to a combined treatment modality with fractionated whole abdomen radiation (WAI) and systemic chemotherapy and immunotherapy regimens can facilitate a safe and effective protocol to reduce tumor burden, increase survival, and improve the quality of life of a locally advanced ovarian cancer patient.

2.
Environ Sci Pollut Res Int ; 31(9): 13207-13217, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38240975

RESUMO

The increasing use of polypropylene (PP) in consumer products leads to the microplastic (PP MPs) contamination of the aquatic ecosystems. Comprehensive toxicological studies of weathered/aged and new PP MPs with Artemia salina are a need of the hour. Our study explores the toxicological differences between naturally weathered (aged) and prepared new PP MPs on Artemia salina. Both the weathered and new PP MPs were prepared using controlled grinding and sieving at ≤ 125 µm. Artemia salina was treated with different concentrations (0.25, 0.5, and 1 mg/mL) of PP MP particles for up to 48 h. The uptake of weathered PP MP particles by Artemia salina was higher than the new PP MPs. The accumulation of PP MP particles was found in the intestine. There was increased oxidative stress recorded in the animal treated with the weathered PP MPs than the new PP MPs. Artemia salina treated with weathered PP MPs showed higher ROS generation and increased, activity of oxidative enzymes like LPO, SOD, and CAT. Collectively, our findings underscore the detrimental effects of weathered and prepared new PP MPs on Artemia salina, which is an ecologically significant species of zooplankton. There is an urgent need and effective measures required to address plastic disposal strategies in an environmentally safe manner.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Polipropilenos/toxicidade , Plásticos/toxicidade , Artemia , Ecossistema , Poluentes Químicos da Água/toxicidade
3.
Environ Pollut ; 341: 123015, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38008250

RESUMO

GFNs have widespread applications but can harm marine systems due to excessive use and improper disposal. Algae-secreted EPS can mitigate nanomaterial harm, but their impact on GFN toxicity is understudied. Hence, in the present study, we investigated the toxicity of three GFNs, graphene oxide (GO), reduced graphene oxide (rGO), and graphene, in pristine and EPS-adsorbed forms in the marine alga Chlorella sp. At an environmentally relevant concentration of 1 mgL-1, all three GFNs induced considerable oxidative stress and impeded growth and photosynthetic activity of the algae. The order of the toxic potential followed GO > rGO > graphene. The various facets of adsorption of EPS (1:1 mixture of loosely bound, and tightly bound EPS) on GFNs were investigated through microscopy, surface chemical analyses, fluorescence quenching studies, and isotherm and kinetics studies. Amongst the pristine GFNs treated with algal cells, GO was found to exert the maximum negative effects on algal growth. Upon adsorption of EPS over the GFNs, a significant decline in growth inhibition was observed compared to the respective pristine forms which strongly correlated with reduced oxidative stress and enhanced photosynthetic parameters in the cells. The formation of a layer of eco-corona after interaction of GFNs with EPS possibly caused a barrier effect which in turn diminished their toxic potential. The findings from the present investigation offer valuable insights into the environmental toxicity of GFNs and show that the eco-corona formation may lessen the risk posed by these materials in the marine environment.


Assuntos
Chlorella , Grafite , Nanoestruturas , Grafite/toxicidade , Nanoestruturas/toxicidade , Estresse Oxidativo
4.
Environ Sci Process Impacts ; 26(1): 56-70, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-37970970

RESUMO

Due to the escalating risk of plastic pollution, nanoplastics have attracted considerable attention in the recent past. They can co-exist and interact with other contaminants like pharmaceuticals in the aquatic environment. Therefore, it is pertinent to understand how these pollutants interact with one another in the ecosystem. The current study examined the individual and combined effects of fluorescent polystyrene nanoplastics (FNPs) and diclofenac (DCF) on Scenedesmus obliquus using a full factorial design. The toxicity of S. obliquus significantly increased in a dose-dependent manner upon exposure to pristine forms of DCF and FNPs. The major cause of individual toxicity of DCF and FNPs in S. obliquus was oxidative stress. In the combined toxicity tests when FNPs (0.01, 0.1, and 1 mg L-1) and DCF (1 mg L-1) were mixed, a synergistic effect was noted compared to the respective pristine FNPs. However, when the DCF concentration in the mixture was decreased to 0.25 mg L-1, the combined toxicity with FNPs (0.01, 0.1, and 1 mg L-1) reduced indicating an antagonistic effect. The independent action model also showed an antagonistic effect for low-dose combinations of DCF and a synergistic effect for high-dose combinations. The estimation of oxidative stress parameters, antioxidant enzyme activity, and photosynthetic pigment content in the algae further validated the cytotoxicity data. The mean hydrodynamic diameter and surface charge analyses further indicated that the colloidal stability of the FNPs in the medium was affected when they were combined with DCF. The key reason for differences in the cytotoxicity of combinations could be observed variations in the aggregation of FNPs and differential adsorption patterns of DCF on the FNPs. These factors efficiently altered cell-particle interactions in the mixture demonstrating a hormesis effect. Thus, this current study highlighted the hazardous nature of the nanoplastics and their co-exposure risks with pharmaceuticals on microalgae in freshwater environments.


Assuntos
Microalgas , Scenedesmus , Poluentes Químicos da Água , Diclofenaco/toxicidade , Poliestirenos , Microplásticos , Ecossistema , Antioxidantes , Água Doce , Preparações Farmacêuticas , Poluentes Químicos da Água/toxicidade
5.
Environ Sci Pollut Res Int ; 30(58): 122700-122716, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37975986

RESUMO

The ubiquitous presence of TiO2 nanoparticles (nTiO2) and microplastics (MPs) in marine ecosystems has raised serious concerns about their combined impact on marine biota. This study investigated the combined toxic effect of nTiO2 (1 mg/L) and NH2 and COOH surface functionalized polystyrene MPs (PSMPs) (2.5 and 10 mg/L) on Chlorella sp. All the experiments were carried out under both visible light and UV-A radiation conditions to elucidate the impact of light on the combined toxicity of these pollutants. Growth inhibition results indicated that pristine nTiO2 exhibited a more toxic effect (38%) under UV-A radiation when compared to visible light conditions (27%). However, no significant change in the growth inhibitory effects of pristine PSMPs was observed between visible light and UVA radiation conditions. The combined pollutants (nTiO2 + 10 mg/L PSMPs) under UV-A radiation exhibited more growth inhibition (nTiO2 + NH2 PSMPs 66%; nTiO2 + COOH PSMPs 50%) than under visible light conditions (nTiO2 + NH2 PSMPs 55%; TiO2 + COOH PSMPs 44%). Independent action modeling indicated that the mixture of nTiO2 with PSMPs (10 mg/L) exhibited an additive effect on the algal growth inhibition under both the light conditions. The photoactive nTiO2 promoted increased production of reactive oxygen species under UV-A exposure, resulting in cellular damage, lipid peroxidation, and impaired photosynthesis. The effects were more pronounced in case of the mixtures where PSMPs added to the oxidative stress. The toxic effects of the binary mixtures of nTiO2 and PSMPs were further confirmed through the field emission electron microscopy, revealing specific morphological abnormalities. This study provides valuable insights into the potential risks associated with the combination of nTiO2 and MPs in marine environments, considering the influence of environmentally relevant light conditions and the test medium.


Assuntos
Chlorella , Poluentes Ambientais , Nanopartículas , Poluentes Químicos da Água , Poliestirenos/toxicidade , Microplásticos , Plásticos , Ecossistema , Nanopartículas/toxicidade , Raios Ultravioleta , Poluentes Ambientais/farmacologia , Poluentes Químicos da Água/toxicidade , Titânio/toxicidade
6.
Plant Physiol Biochem ; 204: 108123, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37935068

RESUMO

Graphene oxide (GO) is widely acknowledged for its exceptional biological and industrial applications. However, its discharge into the environment negatively impacts the ecosystem. This study aimed to investigate the toxicity of GO in Allium cepa root tip cells and the role of extracellular polymeric substances (EPS) in modulating its toxic effects. To evaluate toxicity, various endpoints like cell viability using Evans blue dye, cytotoxicity (mitotic index), genotoxicity (chromosomal aberrations), and oxidative stress assessments (total ROS, superoxide, hydroxyl radical production, and lipid peroxidation) were considered. The results suggest that pristine GO caused a dose-dependent increase in various toxicity parameters, especially the genotoxic effects. Oxidative stress generation by GO is proposed to be the principal mode of action. The EPS-corona formed on GO could potentially counteract the toxic effects, substantially reducing the oxidative stress within the cells.


Assuntos
Allium , Cebolas , Matriz Extracelular de Substâncias Poliméricas , Solo , Ecossistema , Raízes de Plantas , Estresse Oxidativo , Índice Mitótico , Aberrações Cromossômicas/induzido quimicamente , Dano ao DNA
7.
Environ Sci Pollut Res Int ; 30(56): 118693-118705, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37917261

RESUMO

The possible adverse effects of engineered iron oxide nanoparticles, especially magnetite (Fe3O4 NP), on human health and the environment, have raised concerns about their transport and behavior in soil and water systems. Accumulating these NPs in the environment can substantially affect soil and water quality and the well-being of aquatic and terrestrial organisms. Therefore, it is essential to examine the factors that affect Fe3O4 NP transportation and behavior in soil and water systems to determine their possible environmental fate. In this work, experiments were conducted in aqueous and porous media using an environmentally relevant range of pH (5, 7, 9), ionic strength (IS) (10, 50, 100 mM), and humic acid (HA) (0.1, 1, 10 mg L-1) concentrations. Fe3O4 NPs exhibited severe colloidal instability at pH 7 (⁓ = pHPZC) and showed an improvement in apparent colloidal stability at pH 5 and 9 in aquatic and terrestrial environments. HA in the background solutions promoted the overall transport of Fe3O4 NPs by enhancing the colloidal stability. The increased ionic strength in aqueous media hindered the transport by electron double-layer compression and electrostatic repulsion; however, in porous media, the transport was hindered by ionic compression. Furthermore, the transport behavior of Fe3O4 NPs was investigated in different natural waters such as rivers, lakes, taps, and groundwater. The interaction energy pattern in aquatic systems was estimated using the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. This study showed the effects of various physical-chemical conditions on Fe3O4 NP transport in aqueous and porous (sand) media.


Assuntos
Nanopartículas , Humanos , Porosidade , Nanopartículas/química , Solo , Substâncias Húmicas/análise , Areia , Soluções
8.
In Vivo ; 37(6): 2421-2432, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37905617

RESUMO

BACKGROUND/AIM: Patients with radiation sensitive Fanconi anemia (FA) are presenting with cancers of the oral cavity, oropharynx, and other anatomic locations. MATERIALS AND METHODS: Animal models for cancer in FA mice used orthotopic tumors from wild type mice. We derived a cancer cell line from Fanca-/- mice by topical application of the chemical carcinogen dimethyl benzanthracene (DMBA). RESULTS: A Fanca-/- mouse rhabdomyosarcoma was derived from a Fanca-/- (129/Sv) mouse. The in vitro clonogenic survival of the Fanca-/- clone 6 cancer cell line was consistent with the FA genotype. Transplanted tumors demonstrated hypoxic centers surrounded by senescent cells. CONCLUSION: This Fanca-/- mouse syngeneic cancer should provide a valuable resource for discovery and development of new normal tissue radioprotectors for patients with FA and cancer.


Assuntos
Anemia de Fanconi , Neoplasias , Humanos , Camundongos , Animais , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Linhagem Celular , Carcinógenos/toxicidade , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética
9.
Front Cell Neurosci ; 17: 1215945, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37636588

RESUMO

Neurodevelopment, plasticity, and cognition are integral with functional directional transport in neuronal axons that occurs along a unique network of discontinuous polar microtubule (MT) bundles. Axonopathies are caused by brain trauma and genetic diseases that perturb or disrupt the axon MT infrastructure and, with it, the dynamic interplay of motor proteins and cargo essential for axonal maintenance and neuronal signaling. The inability to visualize and quantify normal and altered nanoscale spatio-temporal dynamic transport events prevents a full mechanistic understanding of injury, disease progression, and recovery. To address this gap, we generated DyNAMO, a Dynamic Nanoscale Axonal MT Organization model, which is a biologically realistic theoretical axon framework. We use DyNAMO to experimentally simulate multi-kinesin traffic response to focused or distributed tractable injury parameters, which are MT network perturbations affecting MT lengths and multi-MT staggering. We track kinesins with different motility and processivity, as well as their influx rates, in-transit dissociation and reassociation from inter-MT reservoirs, progression, and quantify and spatially represent motor output ratios. DyNAMO demonstrates, in detail, the complex interplay of mixed motor types, crowding, kinesin off/on dissociation and reassociation, and injury consequences of forced intermingling. Stalled forward progression with different injury states is seen as persistent dynamicity of kinesins transiting between MTs and inter-MT reservoirs. DyNAMO analysis provides novel insights and quantification of axonal injury scenarios, including local injury-affected ATP levels, as well as relates these to influences on signaling outputs, including patterns of gating, waves, and pattern switching. The DyNAMO model significantly expands the network of heuristic and mathematical analysis of neuronal functions relevant to axonopathies, diagnostics, and treatment strategies.

10.
Heliyon ; 9(8): e18798, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37593603

RESUMO

Chemotherapy is the most commonly used therapeutic method for treating many malignancies including gastric cancer. Due to their non-specific and non-targeted drug delivery, it causes resistance leading to cancer progression, relapse, and metastasis of cancer. To overcome this problem we carried out a study aimed to develop a new cisplatin (Cisp) loaded hydroxyl functionalized single-walled carbon nanotube (OH-SWCNT) nanocarrier system to selectively eliminate gastric cancer stem cells. To our understanding, this is the first study of the non-covalent interaction of cisplatin loaded on the surface of hydroxyl-functionalized single-walled carbon nanotubes by ultrasonication. The physical and morphological characterization was carried out by UV-Vis, FTIR spectroscopy, and TEM. A sustained and controlled release of cisp from OH-SWCNT at all three pHs 3.5, 5.5, and 7.4 was observed. Gastric cancer stem cells were isolated from primary cells and were identified by using CD133+ and CD44+ specific markers. Cisplatin-loaded OH-SWCNT nanocarrier was capable of limiting the self-renewal capacity of both CD133+ and CD44+ populations and also decreasing the number of tumorspheres in gastric CSCs. The cell viability percent of AGS cells was 20% at 250 µg/ml concentration. The IC50 value was less than 50% mol/L at both 200 µg/ml and 250 µg/ml of cisplatin-loaded OH-SWCNT. Our findings suggest that cisplatin-loaded OH-SWCNT nanocarrier complexes could target gastric CSCs and also could provide a potential strategy for selectively targeting and efficiently eliminating gastric CSCs. This could be a promising approach to prevent gastric cancer recurrence and metastasis and also improve gastric cancer therapy.

11.
Artigo em Inglês | MEDLINE | ID: mdl-37591457

RESUMO

Metal oxide nanoparticles (NPs) are considered among the most prevalent engineered nanomaterials. To have a deeper understanding of the mode of action of multiple metal oxide nanoparticles in mixtures, we have used a unicellular freshwater microalga Scenedesmus obliquus as a model organism. The toxicity of silicon dioxide (SiO2), iron oxide (Fe3O4), and zinc oxide (ZnO) NPs was studied individually as well as in their binary (SiO2 + Fe3O4, Fe3O4 + ZnO, and ZnO + SiO2) and ternary (SiO2 + Fe3O4 + ZnO) combinations. The effects of metal ions from ZnO and Fe3O4 were investigated as well. The results observed from the study, showed that a significant amount of toxicity was contributed by the dissolved ions in the mixtures of the nanoparticles. Decreases in the cell viability, ROS generation, lipid peroxidation, antioxidant enzyme activity, and photosynthetic efficiency were analyzed. Among all the individual particles, ZnO NPs showed the maximum effects and increased the toxicities of the binary mixtures. The binary and ternary mixtures of the NPs clearly showed increased toxic effects in comparison with the individual entities. However, the ternary combination had lesser toxic effects than the binary combination of Fe3O4 + ZnO. The decline in cell viability and photosynthetic efficiency were strongly correlated with various oxidative stress biomarkers emphasizing the crucial role of reactive oxygen species in inducing the toxic effects. The findings from this study highlight the importance of evaluating the combinatorial effects of various metal oxide NPs as part of a comprehensive ecotoxicity assessment in freshwater microalgae.


Assuntos
Nanopartículas Metálicas , Microalgas , Scenedesmus , Óxido de Zinco , Óxido de Zinco/toxicidade , Dióxido de Silício/toxicidade , Óxidos , Nanopartículas Metálicas/toxicidade , Antioxidantes , Água Doce , Íons
12.
Environ Sci Process Impacts ; 25(9): 1428-1437, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37534914

RESUMO

Disposable surgical face masks extensively used during the COVID-19 outbreak would release microplastics into the aquatic environment. The increasing usage of titanium dioxide nanoparticles (nTiO2) in various consumer items has led to its ubiquitous presence in freshwater systems. This study determined the quantity and kind of microplastics discharged from disposable surgical face masks. The mask-leached microplastics were identified to be polypropylene of varying shapes and sizes, spanning from 1 µm to 15 µm. In addition, heavy metals like Cd, Cr, and Hg leached from the face masks were quantified. Four concentrations of nTiO2, 0.5, 1, 2, and 4 mg L-1, were mixed with leached solution from the face masks to perform the combined toxicity test on freshwater algae, Scenedesmus obliquus. A dose-dependent decrease in algal cell viability was observed upon treatment with various concentrations of nTiO2 individually. The mixtures of nTiO2 and the leached solution from the face masks exhibited significantly more toxicity in the algal cells than in their pristine forms. nTiO2 promoted increased production of oxidative stress and antioxidant enzyme activities resulting in cellular damage and decreased photosynthesis. These impacts were elevated when the algal cells were treated with the binary mixture. Furthermore, the heavy metal ions leached from face masks also contributed to the toxic effects. Our study shows that the leachates from disposable surgical face masks, combined with nTiO2, may pose a severe environmental threat.


Assuntos
COVID-19 , Metais Pesados , Microalgas , Nanopartículas , Scenedesmus , Poluentes Químicos da Água , Máscaras , Microplásticos , Plásticos , Metais Pesados/toxicidade , Titânio/toxicidade , Nanopartículas/toxicidade , Antioxidantes , Poluentes Químicos da Água/toxicidade
13.
Environ Toxicol Pharmacol ; 101: 104205, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37392975

RESUMO

Most pharmaceuticals are stored in synthetic polymer bottles, manufactured using polyethylene as the base material. The toxicological impact of pharmaceutical container leachate was studied on Donax faba. Several organics and inorganics were identified from the leachate. The concentrations of heavy metals in the leachate was higher than standard reference value for drinking water. In the leachate treatment the protein concentration increased to 8.5% more than the control. The reactive oxygen species (ROS) level elevated by 3 folds and malondialdehyde (MDA) increased by 4.3% in comparison to the control. Superoxide dismutase (SOD) and catalase (CAT) showed a decrease by 14% and 70.5% respectively. The leachate affected the antioxidant machinery of D. faba. Similarly, these PET (polyethylene terephthalate) pharmaceutical containers could potentially leach additives into the drugs and may cause oxidative and metabolic damages to higher organisms including human beings.


Assuntos
Bivalves , Poluentes Químicos da Água , Humanos , Animais , Microplásticos , Estresse Oxidativo , Plásticos , Catalase/metabolismo , Bivalves/metabolismo , Preparações Farmacêuticas , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
14.
Cell Death Discov ; 9(1): 252, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460469

RESUMO

Cellular senescence is involved in the development of pulmonary fibrosis as well as in lung tissue repair and regeneration. Therefore, a strategy of removal of senescent cells by senolytic drugs may not produce the desired therapeutic result. Previously we reported that tyrosine kinase Fgr is upregulated in ionizing irradiation-induced senescent cells. Inhibition of Fgr reduces the production of profibrotic proteins by radiation-induced senescent cells in vitro; however, a mechanistic relationship between senescent cells and radiation-induced pulmonary fibrosis (RIPF) has not been established. We now report that senescent cells from the lungs of mice with RIPF, release profibrotic proteins for target cells and secrete chemotactic proteins for marrow cells. The Fgr inhibitor TL02-59, reduces this release of profibrotic chemokines from the lungs of RIPF mice, without reducing numbers of senescent cells. In vitro studies demonstrated that TL02-59 abrogates the upregulation of profibrotic genes in target cells in transwell cultures. Also, protein arrays using lung fibroblasts demonstrated that TL02-59 inhibits the production of chemokines involved in the migration of macrophages to the lung. In thoracic-irradiated mice, TL02-59 prevents RIPF, significantly reduces levels of expression of fibrotic gene products, and significantly reduces the recruitment of CD11b+ macrophages to the lungs. Bronchoalveolar lavage (BAL) cells from RIPF mice show increased Fgr and other senescent cell markers including p16. In human idiopathic pulmonary fibrosis (IPF) and in RIPF, Fgr, and other senescent cell biomarkers are increased. In both mouse and human RIPF, there is an accumulation of Fgr-positive proinflammatory CD11b+ macrophages in the lungs. Thus, elevated levels of Fgr in lung senescent cells upregulate profibrotic gene products, and chemokines that might be responsible for macrophage infiltration into lungs. The detection of Fgr in senescent cells that are obtained from BAL during the development of RIPF may help predict the onset and facilitate the delivery of medical countermeasures.

15.
RSC Adv ; 13(33): 22905-22917, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37520083

RESUMO

The unsustainable manufacturing, utilization and inadequate handling of plastics have led to a surge in global plastic pollution. In recent times, there has been increasing concern about the plausible hazards associated with exposure to micro/nanoplastics (M/NPs). As aquatic systems are considered to be the likely sink for M/NPs, it is crucial to comprehend their environmental behavior. The bioavailability, toxicity and fate of M/NPs in the environment are predominantly dictated by their surface characteristics. In the aquatic environment, M/NPs are prone to be internalized by aquatic organisms. This may facilitate their interaction with a diverse array of biomolecules within the organism, resulting in the formation of a biocorona (BC). The development of BC causes modifications in the physicochemical attributes of the M/NPs including changes to their size, stability, surface charge and other properties. This review details the concept of BC formation and its underlying mechanism. It provides insight on the analytical techniques employed for characterizing BC formation and addresses the associated challenges. Further, the eco-toxicological implications of M/NPs and the role of BC in modifying their potential toxicity on aquatic organisms is specified. The impact of BC formation on the fate and transport of M/NPs is discussed. A concise outlook on the future perspectives is also presented.

16.
Plant Physiol Biochem ; 201: 107837, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37331074

RESUMO

Application of nanomaterials in agriculture has been extensively explored over the past decade leading to a wide ambit of nanoparticle-based agrochemicals. Metallic nanoparticles consisting of plant macro- and micro-nutrients have been used as nutritional supplements for plants through soil amendments, foliar sprays, or seed treatment. However, most of these studies emphasize monometallic nanoparticles which limit the range of usage and effectivity of such nanoparticles (NPs). Hence, we have employed a bimetallic nanoparticle (BNP) consisting of two different micro-nutrients (Cu & Fe) in rice plants to test its efficacy in terms of growth and photosynthesis. Several experiments were designed to assess growth (root-shoot length, relative water content) and photosynthetic parameters (pigment content, relative expression of rbcS, rbcL & ChlGetc.). To determine whether the treatment induced any oxidative stress or structural anomalies within the plant cells, histochemical staining, anti-oxidant enzyme activities, FTIR, and SEM micrographs were undertaken. Results indicated that foliar application of 5 mg L-1 BNP increased vigor and photosynthetic efficiency whereas 10 mg L-1 concentration induced oxidative stress to some extent. Furthermore, the BNP treatment did not perturb the structural integrity of the exposed plant parts and also did not induce any cytotoxicity. Application of BNPs in agriculture has not been explored extensively to date and this study is one of the first reports that not only documents the effectivity of Cu-Fe BNP but also critically explores the safety of its usage on rice plants making it a useful lead to design new BNPs and explore their efficacy.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Oryza , Plântula , Fertilizantes , Oryza/metabolismo , Nanopartículas/química , Fotossíntese , Nanopartículas Metálicas/química
17.
Environ Sci Pollut Res Int ; 30(27): 70246-70259, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37145361

RESUMO

Due to their remarkable properties, the applications of carbon-based nanomaterials (CNMs) such as graphene and functionalized multi-walled carbon nanotubes (f-MWCNTs) are increasing. These CNMs can enter the freshwater environment via numerous routes, potentially exposing various organisms. The current study assesses the effects of graphene, f-MWCNTs, and their binary mixture on the freshwater algal species Scenedesmus obliquus. The concentration for the individual materials was kept at 1 mg L-1, while graphene and f-MWCNTs were taken at 0.5 mg L-1 each for the combination. Both the CNMs caused a decrease in cell viability, esterase activity, and photosynthetic efficiency in the cells. The cytotoxic effects were accompanied by increased hydroxyl and superoxide radical generation, lipid peroxidation, antioxidant enzyme activity (catalase and superoxide dismutase), and mitochondrial membrane potential. Graphene was more toxic compared to f-MWCNTs. The binary mixture of the pollutants demonstrated a synergistic enhancement of the toxic potential. Oxidative stress generation played a critical role in toxicity responses, as noted by a strong correlation between the physiological parameters and the biomarkers of oxidative stress. The outcomes from this study emphasize the significance of considering the combined effects of various CNMs as part of a thorough evaluation of ecotoxicity in freshwater organisms.


Assuntos
Grafite , Microalgas , Nanotubos de Carbono , Scenedesmus , Poluentes Químicos da Água , Grafite/toxicidade , Microalgas/metabolismo , Scenedesmus/metabolismo , Nanotubos de Carbono/toxicidade , Estresse Oxidativo , Antioxidantes/metabolismo , Água Doce , Poluentes Químicos da Água/toxicidade
18.
Chemosphere ; 333: 138912, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37182714

RESUMO

Ferrocene functionalized rGO-ZnO nanocomposite was synthesized via the facile hydrothermal method. ZnO was reduced over the 3-dimensional rGO framework (3D-Fc@rGO) using Camellia sinensis extract. The Fc@rGO-ZnO nanocomposite was employed for pharmaceutical degradation (sulfamethoxazole (SMX) and ciprofloxacin (CIP)) in an aqueous solution under UV C light. The physicochemical properties of the as-prepared photocatalyst were characterized using FTIR, XRD, FESEM, EDS mapping, HR-TEM, XPS, and DR-UV Vis. The as-synthesized Fc@rGO-ZnO photocatalyst performed remarkably against pristine ZnO, with a fivefold increase in removal efficiency. This superior activity was attributed to its improved light harvesting, charge carrier interface, and enhanced charge separation. Additionally, the photocatalyst obeyed the Lagergen model for pseudo-first-order kinetics. Congruously, the integrated approach of Fc@rGO and ZnO as oxidizing agents was proficient in removing >95% of antibiotics (CIP and SMX) within 180 min. Furthermore, the heterostructure configuration developed between Fc@rGO and ZnO helps in charge migration and generation of abundant •OH and •O2- radicals for photodegradation activities. The toxicity assessment of the treated solutions showed improved cell viability in the algal strains of Scenedesmus and Chlorella sp. Moreover, this novel approach for the synthesis of a photoactive nanocomposite is found to be low-cost and reusable for three cycles. The nanocomposite is environmentally sustainable paving the way for practical applications in the treatment of different classes of antibiotics.


Assuntos
Chlorella , Óxido de Zinco , Antibacterianos/química , Ciprofloxacina/química , Sulfametoxazol , Óxido de Zinco/química , Adsorção , Água
19.
RSC Adv ; 13(21): 14159-14170, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37180011

RESUMO

Malaoxon, a highly toxic metabolite of malathion, can lead to severe harm or death if ingested. This study introduces a rapid and innovative fluorescent biosensor that relies on acetylcholinesterase (AChE) inhibition for detecting malaoxon using Ag-GO nanohybrid. The synthesized nanomaterials (GO, Ag-GO) were evaluated with multiple characterization methods to confirm their elemental composition, morphology, and crystalline structure. The fabricated biosensor works by utilizing AChE to catalyze the substrate acetylthiocholine (ATCh), which generates positively charged thiocholine (TCh) and triggers citrate-coated AgNP aggregation on the GO sheet, leading to an increase in fluorescence emission at 423 nm. However, the presence of malaoxon inhibits the AChE action and reduces the production of TCh, resulting in a decrease in fluorescence emission intensity. This mechanism allows the biosensor to detect a wide range of malaoxon concentrations with excellent linearity and low LOD and LOQ values of 0.001 pM to 1000 pM, 0.9 fM, and 3 fM, respectively. The biosensor also demonstrated superior inhibitory efficacy towards malaoxon compared to other OP pesticides, indicating its resistance to external influences. In practical sample testing, the biosensor displayed recoveries of over 98% with extremely low RSD% values. Based on the results obtained from the study, it can be concluded that the developed biosensor has the potential to be used in various real-world applications for detecting malaoxon in food, and water samples, with high sensitivity, accuracy, and reliability.

20.
Biosensors (Basel) ; 13(4)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37185563

RESUMO

Pesticides are often used in different applications, including agriculture, forestry, aquaculture, food industry, etc., for the purpose of controlling insect pests and weeds. The indiscriminate usage of pesticides poses a massive threat to food, environmental, and human health safety. Hence, the fabrication of a sensitive and reliable sensor for the detection of pesticide residues in agro products and environmental samples is a critical subject to be considered. Recently, the graphene family including graphene oxide (GO) and reduced graphene oxide (rGO) have been frequently employed in the construction of sensors owing to their biocompatibility, high surface-area-to-volume ratio, and excellent physiochemical, optical, and electrical properties. The integration of biorecognition molecules with GO/rGO nanomaterials offers a promising detection strategy with outstanding repeatability, signal intensity, and low background noise. This review focuses on the latest developments (2018 to 2022) in the different types of GO/rGO-based biosensors, such as surface plasmon resonance (SPR), fluorescence resonance energy transfer (FRET), and electrochemical-based techniques, among other, for pesticide analysis. The critical discussions on the advantages, limitations, and sensing mechanisms of emerging GO/rGO-based biosensors are also highlighted. Additionally, we explore the existing hurdles in GO/rGO-based biosensors, such as handling difficult biological samples, reducing the total cost, and so on. This review also outlines the research gaps and viewpoints for future innovations in GO/rGO-based biosensors for pesticide determination mainly in areas with insufficient resources.


Assuntos
Técnicas Biossensoriais , Grafite , Nanoestruturas , Praguicidas , Humanos , Grafite/química , Nanoestruturas/química , Técnicas Biossensoriais/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...